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Abstract

Humans possess an innate ability to group objects by similarity—a cognitive mech-1

anism that clustering algorithms aim to emulate. Recent advances in community2

detection have enabled the discovery of configurations—valid hierarchical clus-3

terings across multiple resolution scales—without requiring labeled data. In this4

paper, we formally characterize these configurations and identify similar emergent5

structures in register tokens within Vision Transformers. Unlike register tokens,6

configurations exhibit lower redundancy and eliminate the need for ad hoc se-7

lection. They can be learned through unsupervised or self-supervised methods,8

yet their selection or composition remains specific to the downstream task and9

input. Building on these insights, we introduce GraMixC, a plug-and-play mod-10

ule that extracts configurations, aligns them using our novel Reverse Merge/Split11

(RMS) technique, and fuses them via attention heads before forwarding them to12

any downstream predictor. On the DSNI 16S rRNA cultivation-media prediction13

task, GraMixC improves the R2 from 0.6 to 0.9 on various methods, setting a new14

state-of-the-art. We further validate GraMixC across standard tabular benchmarks,15

where it consistently outperforms single-resolution and static-feature baselines.16

1 Introduction17

Figure 1: Illustration of CIFAR10 configu-
rations. Each column represents clustering
at a specific resolution—a configuration.

Learning general-purpose features that enhance down-18

stream tasks has been a long-standing goal in machine19

learning. One prominent example is clustering (i.e., com-20

munity detection) in unsupervised learning, which aims21

to group entities so that objects in the same cluster are22

similar, while objects in different clusters are dissimi-23

lar, without relying on any labels [1]–[3]. Interestingly,24

this paradigm demonstrates remarkable similarities to25

human-like behaviors. Decades of cognitive science26

studies show that even infants have the ability to group27

objects by similarity [4], [5]. In particular, they often28

organize them at different abstraction levels [6], [7]. In-29

spired by this, recent advances in community detection30

have extended clustering to the discovery of configura-31

tions—hierarchical clusterings that span multiple reso-32

lution scales [8]. For example, as illustrated in Fig. lin-33

eage diagram in Fig. 1, in the CIFAR10 dataset [9],34

coarse configurations may separate vehicles from an-35

imals, while finer configurations distinguish between36

birds, cats, and dogs. These multi-resolution representations reveal rich hierarchical structures that37

could provide stronger priors or inductive biases for deep models. However, despite their potential,38
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such configurations remain largely underexplored in deep learning, especially in challenging domains39

where labels are sparse.40

One such domain is 16S ribosomal RNA (rRNA) gene sequencing, a widely used tool in microbiome41

studies for identifying and classifying bacteria. Analyzing 16S rRNA data has consistently confronted42

significant challenges in downstream prediction tasks within label-scarce environments. Previous43

works in 16S rRNA representation learning have demonstrated substantial benefits for bacterial44

taxonomic profiling and microbial community analysis [10]–[12]. Notably, Johnson et al. [13]45

showed that full-length sequencing combined with appropriate clustering of intragenomic sequence46

variation can provide more accurate representation of bacterial species in microbiome datasets. These47

findings underscore the importance of learning clustered representations without relying on labels.48

Recent methodologies typically transform clustering results into pseudo-labels to enhance down-49

stream prediction performance. For instance, DeepCluster [14] iteratively clusters CNN-extracted50

visual features and leverages these cluster assignments to guide network parameter updates. Graph-51

based methods such as [15] employ structural clustering to overcome limitations of traditional52

contrastive learning approaches that depend on positive and negative sample pairs. Their method53

captures structural relationships among nodes in heterogeneous information networks, establishing a54

self-supervised pre-training framework that learns robust network representations from unlabeled55

data. Nevertheless, aforementioned approaches predominantly focus on a single configuration type,56

overlooking the potential benefits of mixing configurations across multiple resolution scales.57

In this paper, we introduce GraMixC, a plug-and-play module that extracts, aligns and mixes graph-58

based configurations for downstream prediction. The main contributions of the paper are as follows:59

• We identify three key characteristics of clustering configurations through systematic exper-60

imental analysis, providing a novel perspective on enhancing downstream prediction via61

mixing configurations.62

• We propose GraMixC, a plug-and-play module based on mixed configurations. We apply it63

to a novel 16S rRNA cultivation-media prediction task, setting a new state-of-the-art.64

• We further conduct extensive experiments on multiple standard tabular benchmarks to65

validate GraMixC’s effectiveness, where it consistently outperforms single-resolution and66

static-feature baselines.67

The remainder of this paper is organized as follows. Section 2 analyzes behavioral patterns of68

configurations. Section 3 details our proposed GraMixC. Section 4 evaluates GraMixC’s performance69

through extensive experiments. Finally, Section 5 concludes the paper. Our data and implementation70

is available at https://anonymous.4open.science/r/project-34CB.71

2 Preliminary results72

We first present preliminary experimental results on configurations using CIFAR10. Specifically,73

we compare patterns of configurations with those of the learnable “register” tokens in a recent74

vision transformer DINOv2-reg [16]. Fig. 2 shows the attention maps from our configurations and75

their register tokens. Moreover, Fig. 3 shows qualitative behaviors of our configurations and their76

quantitative advantages over registers in terms of feature importance and neighborhood similarity.77

From these results, we identify three key properties:78

Configurations emerge via unsupervised or self-supervised learning. We define Near ground truth79

(GT) balls as balls selected with the highest clustering scores, marked yellow in Fig. 2a. As shown in80

Fig. 2b, the attention map, acquired by feeding configurations as tokens to attention heads for linear81

probing, yields high norm regions substantially overlap with GT balls. On another hand, DINOv2-reg82

exhibits similar attention map patterns in selected registers (see Fig. 2c), which might be related to83

registers activating different areas in Fig. 2d, similar to slot attention [16]–[19]. Thus, based on the84

similar attention map behavior, register token can be considered as a latent configuration.85

Configurations are selected and mixed based on input and task. Configuration selection and86

mixing refers to learning which resolution scales to focus on for a given downstream task. We87

visualize this via attention maps over configuration tokens, where high-norm regions indicate the88

selected scales. In Fig. 2b, attention norms vary across rows, showing that each input sample triggers89

different resolution scales. Without any change to the configurations, we merge the original labels90
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(a) Configurations (b) Cfg. attention map (c) Reg. attention map (d) Reg. attention imgs

Figure 2: Comparison of attention maps obtained from configurations and registers, rows for samples.
(a): Lineage diagram for configurations, near GT balls are marked yellow. (b): Attention map of
configuration tokens in an attention-based linear probing. (c): Attention map of DINOv2-reg register
tokens, mean of all patch norms is used. (d): Attention maps over the register tokens, as images.

(a) Configurations (b) Cfg. attention map (c) Feature importance (d) Neighbors similarity

Figure 3: Illustration of another two properties of configurations, grouped by left two and right two.
(a): Lineage diagram where coarser classes are used for GT. (b): Attention map in linear probing the
coarser classes. (c): Distribution of feature vector importance over the register tokens querying, mean
of all patch importance is used. (d): Distribution of cosine similarity between query embeddings of
register and configuration tokens and their 2 neighbors, mean of all patch similarities is used.

into coarser classes (Fig. 3a) and plot the new attention map (Fig. 3b). The attention shifts to align91

with the coarser GT, whereas DINOv2-reg register tokens remain unchanged unless re-trained. These92

observations confirm that configuration selection and mixing are input- and task-dependent.93

Configurations are more informative and less redundant than register tokens. Register tokens94

can help extract configurations, similar to object detection [20], [21], but selecting a fixed number by95

feature importance is arbitrary and non-rigorous (see Fig. 3c). Furthermore, register tokens exhibit96

high redundancy—cosine similarity between their embeddings and their 2 neighbors embeddings is97

heavily skewed toward 1—whereas configurations yield information less redundant (see Fig. 3d).98

3 Methodology99

Having these characterizations, we hypothesize that unsupervised methods can produce hierarchical100

multi-resolution clusterings, and that task- and input-specific selection and mixing of these configura-101

tions represent global information beneficial to downstream tasks. Building on the hypothesis, we102

propose a lightweight module GraMixC, that treats configurations as tokens ([CFG]) and incorporates103

a novel alignment layer plus learnable attention heads [22] after the configuration extraction model,104

enabling task- and input-specific mixing of configurations via end-to-end back-propagation.105

Fig. 4 illustrates GraMixC. Given an input matrix X ∈ RN×d (with N samples and feature dimen-106

sion d), GraMixC pass X to two branches: (1) a path to unsupervised learning box that extracts107

configurations, and (2) a direct path to the downstream predictor. If at inference, we apply Reverse108

Merge & Split (RMS) alignment on the configurations. Then we pass them to positional encoding (PE)109

and attention heads. The final concatenation is passed to a downstream predictor for the prediction ỹ.110

Except for the downstream predictor, the GraMixC model can be divided into three parts: the111

unsupervised learning of configurations, the Reverse Merge & Split (RMS) for alignment, and112
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Figure 4: Illustration of the proposed GraMixC module and resulting model. The input data branches
into (upper) a path to unsupervised learning box that extracts configurations, and (lower) a direct path
to the downstream predictor. Their outcomes concatenate and pass to the downstream predictor. The
components occur only during training and inference are colored in blue and gray, respectively.

attention heads for fusion. In the attention heads part, following Darcet et al. [16], we append register113

tokens ([REG]) after [CFG] and [CLS] for a clean attention map, that can be used backwards to guide114

configuration selection . Below we detail the rest two components in Section 3.1 and Section 3.2.115

3.1 Multi-resolution graph-based clustering116

Given X , multi-resolution clustering seeks to extract configurations—valid hierarchical clusterings117

across multiple resolution scales—which we denote as Ω ∈ NN×m, where m denotes the number of118

valid resolution levels. To preserve the latent manifold structure in data, ease parameter sensitivity, and119

prevent other problems with traditional clustering methods (see Appendix B), we choose the resolution120

parameter (γ ∈ R+)-based community detection as our core clustering method. While BlueRed [23]121

can conduct graph clustering without problems like resolution limit or parameter sensitivity in122

traditional methods, recent work by Pitsianis et al. [8] further demonstrates the elimination of γ123

selection, and enabled the unsupervised discovery of Ω and the corresponding set of all valid γ, which124

is denoted as Γ = {γ∗
1 , γ

∗
2 , . . . , γ

∗
m} ⊆ [0,∞). Inspired by these works, the unsupervised box in125

Fig. 4 unfolds into two steps: (1) k-nearest neighbors (kNN) [24] graph construction, which return126

a directed graph G = (V,E), usually represented as adjacency matrix A ∈ RN×N
+ , and (2) multi-γ127

clustering on the resulted graph, i.e. modularity based community detection with unsupervised Γ128

learning, which return the wanted Ω. The details for each of these two steps are:129

(1) kNN graph construction. We construct a kNN graph with k = log10 N as convention, using130

Euclidean distance for simplicity. Such pair-wise geometric distance between two different vertexes131

is denoted d(xi,xj) where i ̸= j and xi ∈ Rd is the i-th feature vector. We then have the adjacency132

matrix A formulated as: Aij = d(xi,xj) if (xi,xj) ∈ E, 0 otherwise, where E is the edge set133

of the kNN graph and Aij denotes the i-th row and j-th column element of the adjacency matrix.134

Then we force column stochastic by dividing each column in the constructed A with the column135

sum. The resulted graph is sparse stochastic, and we can apply Stochastic Graph t-SNE (SG-t-SNE)136

reweighting [25], which proved to remedy skewed degree distribution, that is not promised by137

conventional t-SNE [26]. From the original work, the key equations for SG-t-SNE reweighting are:138

w(xi,xj) =
1

λ
exp

(
−d2(xi,xj)

2σ2
i

)
, with λ =

∑
xj :(xi,xj)∈E

exp

(
−d2(xi,xj)

2σ2
i

)
,

where λ is a non-negative parameter constant, which we simply set to 15 as previous work show139

that it is not so sensitive to the choice of λ [25], and σi is a variable to be numerically solved with140

bisection method. After giving value of w to d, we have A with less skewed degree distribution,141

which avoids problems like numerical instability and bias towards hubs in downstream clustering.142
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(2) multi-γ community detection. Then one may simply pass the reweighted A to γ-based com-143

munity detection method, such as Leiden algorithm [27], to get one pseudo-configuration vector144

ωγ ∈ {1, . . . , N}N (“pseudo” for not sure to be valid). However, such γ falls in the range of [0,∞),145

and searching over all possible γ is exhausting. Therefore, we incorporate the BlueRed method with146

parallel descending triangulation (parallel-DT) [8], in order to automatically discover all valid γ∗ ∈ Γ.147

Given a fixed γ, BlueRed find the optimal configuration ωγ by the following optimization:148

ωγ = argmin
ω∈{1,...,N}N

− |ω|∞∑
k=1

∑
(i,j)∈E

d(xi,xj)1ωi=ωj=k + γ

|ω|∞∑
k=1

∑
(i,j)∈E

d2(xi,xj)1ωi=k,

 ,

where ωi denotes the i-th element of ω, |ω|∞ = maxi≤N ωi is a inf-norm, and 1 denotes the indicator149

gate which take value 1 if its subscript condition holds, 0 otherwise. Pitsianis et al. [8] describe the150

first term as attraction and the second term as repulsion. Optimizing each solely yields all-in-one151

configuration ω0 = [1, 1, . . . , 1] and all-lonely configuration ω∞ = [1, 2, . . . , N ]. Between these152

two configurations, parallel-DT allows forming BlueRed Front (BRF) [8] by segmenting (0,∞) into153

m ranges, among which each has a dominant γ∗
i yields lower HAR [8]—the sum of first term and the154

negative second term—which means “local minimum” on that range. Thus desired Ω is formed.155

3.2 RMS: reverse merge & split alignment156

Multi-resolution clustering on different datasets Xtrain and Xtest often naturally produces misaligned157

configurations, that either (1) have different value of m or |ω|∞, or (2) have different cluster labels.158

While (2) is not a problem as re-assigning fix it, (1) could be problematic as the length and position159

of configurations influence the downstream fusion. One possible interpretation is that some clusters160

are further merged or split in another configuration, leading to this mismatch. To address this, we161

propose Reverse Merge & Split (RMS), which identifies an optimal alignment, allowing re-merging162

and re-splitting, between two configurations, ωi and ωj . First of all, an alignment score is defined:163

SCORE(ωi,ωj) = ARI(ωi,ωj)− θ

∣∣∣∣ |ωi|∞ − |ωj |∞
|ωi|∞ + |ωj |∞

∣∣∣∣ .
where θ is a hyperparameter to balance the weights of the two terms, which we set to 0.1, ARI is the164

adjusted rand index as defined in Hubert and Arabie [28]. By this punished ARI design, we consider165

different labels, merge and split during scoring the alignment between two partition, but also avoids166

too much difference in number of clusters (one extreme case is ω0 and ω∞ has ARI of 1).167

However, the SCORE itself does not convey the mapping we need for reassigning. In RMS alignment,168

we construct a confusion matrix C ∈ N|ωi|∞×|ωj |∞ between ωi and ωj . As an assignment problem169

with a rectangle cost matrix−C, it is solvable by twisting existing Hungarian algorithm methods [29]–170

[31]. Because C is the adjacency matrix of a bipartite graph, spectral reordering via its graph171

Laplacian is preferred, since it encodes global connectivity and reveals coherent split–merge structures172

rather than merely optimizing diagonal entries. As the Fiedler vector reordering [32] assumes173

symmetric positive semi-definite, it is not directly applicable to C. Inspired by a recent work of174

Floros, Pitsianis, and Sun [33], we introduce a two-walk Laplacian, which is defined as:175

Ltw = D −Ctw, with Ctw =

[
CC⊤ C
C⊤ C⊤C

]
,

where D = diag(Ctw1) is the diagonal degree matrix of Ctw. We remap ωi and ωj by using,176

respectively, the first ∥ωi∥∞ and the last ∥ωj∥∞ entries in the Fiedler eigenvector of Ltw, which177

is the eigenvector corresponds to smallest positive eigenvalue. We further reverse split and merge178

simply by reassigning the redundant columns or rows who has element larger than its diagonal entry.179

In GraMixC, we carry a small portion (0.1%) of train samples as anchors during inference, and the180

portion of Ωtrain and Ωtest corresponding to the anchors are used to calculate the SCORE. Given m is181

usually small, we exhaustively test pairs (ωi,ωj) then iteratively pick the pair yielding the highest182

SCORE for each ωi. For each pair, we apply the mapping from RMS(ωi,ωj). The final alignments183

is then used to match the configurations. See the GitHub repository 1 and Appendix C for alignment184

examples and more implementation details.185

1https://anonymous.4open.science/r/project-82CE
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Figure 5: Illustration of target value distributions across train-test splits in DSNI dataset. The first
row represents pH distributions and the second row represents temperature distributions. The first
column represents the training set (ytrain) and the second column represents the test set (ytest).

4 Experiments186

In this section, we evaluate the proposed plug-and-play module by training baseline models with and187

without GraMixC (GMC). We also test a static variant (GC), which use aligned configurations as188

extra features, without attention mechanism. We expect the performance to follow a general trend189

baseline < baseline+GC < baseline+GMC.

We then ablate the number of configurations used to check that they cause a performance regression.190

4.1 Implementation details and experimental setup191

Our module was implemented with MATLAB, Python 3.12, PyTorch 2.6. We run trainings on a192

GeForce RTX 3090Ti GPU. Models were trained with the Adam optimizer [34] at a fixed learning193

rate of 10−3. Unless otherwise noted, we used a batch size of 100 and trained for up to 100 epochs.194

Ahead of diving into the experimental details, we briefly summarize the datasets and metrics used.195

DSNI-pH and DSNI-Temp. We collected the DSNI dataset from DSMZ [35] and NIH [36]. It196

comprises six relational tables (STRAINS, MEDIA, SOLUTIONS, INGREDIENTS, STEPS, GAS)197

covering taxonomic and protocol information. We use approximately 65 000 samples with 16S rRNA198

sequence (500–1 500 nucleotides), cultivation temperatures (2–103 ◦C), and pH (0.1–11). The task is199

to predict optimal temperature (DSNI-Temp) and pH (DSNI-pH) from the 16S rRNA sequence.200

Following Çelikkanat, Masegosa, and Nielsen [37] and related works [38], [39], we encode each201

16S rRNA sequence as a 7-mer count vector in N16 384, yielding a dataset of shape 65 023× 16 384.202

We perform an 80/20 split (52,018 train / 13,005 test), which preserves the skewed pH (6–8) and203

temperature (20–40 ◦C) distributions. Fig. 5 provides an illustration for target value (ytrain and ytest)204

distribution. Preprocessing—robust scaling, variance thresholding, and selection of the top 1,000205

features—was fitted on the training set and then applied to both splits to avoid data leakage.206

Additional benchmarks. We further evaluate on QM9 [40] for molecular property regression, on207

Boston Housing [41], and on MNIST [42] and CIFAR10 for classification (some in Appendix D).208

Evaluation metrics. For regression we use mean squared error (MSE), mean absolute error (MAE;209

used for QM9 for comparability with SOTA) for training, and report coefficient of determination210

(R2). For classification we use cross-entropy loss (CE) for training and report top-1 accuracy (Acc).211
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Table 1: Regression performance on DSNI-pH, DSNI-Temp and QM9. Values are mean±std from runs
with different random seeds; best results per baseline are bold; best results per metric are underlined.

DSNI-pH DSNI-Temp QM9

MSE ↓ R2 MSE ↓ R2 MAE ↓ R2

RF 0.198±0.000 0.601±0.001 17.759±0.276 0.393±0.009 0.015±0.000 0.979±0.000

XGBoost 0.196±0.001 0.604±0.003 18.212±0.543 0.377±0.018 0.014±0.001 0.978±0.001

CatBoost 0.193±0.001 0.610±0.002 17.375±0.398 0.406±0.013 0.014±0.000 0.978±0.002

3LP 0.201±0.002 0.595±0.006 18.484±0.183 0.368±0.006 0.018±0.001 0.958±0.001

3LP+GC 0.097±0.004 0.804±0.008 6.520±0.360 0.777±0.012 0.016±0.003 0.974±0.000

3LP+GMC 0.023±0.002 0.953±0.004 2.277±0.061 0.922±0.002 0.010±0.003 0.990±0.002

TabN 0.184±0.004 0.629±0.007 13.290±0.244 0.545±0.008 0.015±0.001 0.962±0.002

TabN+GC 0.086±0.003 0.825±0.007 7.997±0.210 0.726±0.007 0.012±0.002 0.983±0.001

TabN+GMC 0.020±0.001 0.959±0.002 0.989±0.361 0.966±0.012 0.008±0.000 0.995±0.002

TabT 0.256±0.007 0.483±0.014 18.910±0.247 0.353±0.008 0.434±0.008 0.921±0.008

TabT+GC 0.106±0.002 0.786±0.005 8.280±0.303 0.717±0.010 0.212±0.004 0.961±0.008

TabT+GMC 0.017±0.002 0.964±0.005 2.785±0.540 0.904±0.018 0.009±0.000 0.998±0.001

FTT 0.218±0.003 0.561±0.006 13.571±0.069 0.536±0.002 0.085±0.005 0.984±0.006

FTT+GC 0.070±0.003 0.858±0.007 5.915±0.277 0.797±0.009 0.034±0.002 0.993±0.003

FTT+GMC 0.007±0.005 0.984±0.009 1.480±0.120 0.949±0.004 0.026±0.001 0.995±0.003

For each benchmark, we include three classical decision tree models for reference: Random Forest212

(RF) [43], XGBoost [44], CatBoost [45]. As both GMC and GC are plug-and-play modules, they can213

be easily applied to various downstream predictors. We first evaluate a 3-layer perceptron (3LP) with214

hidden dims [256,128,64]. Because our inputs combine numerical features with categorical config-215

urations, we naturally consider tabular models: TabNet (TabN) [46], TabTransformer (TabT) [47],216

FT-Transformer (FTT) [48] were all run with their default settings from the official implementations.217

4.2 Evaluation of the proposed module218

As shown in Fig. 2 and Fig. 3, we demonstrate, with attention maps, the learned mixing of configu-219

rations by training models with self-attention head on aligned configurations. In order to quantify220

the quality of such mixing, for each baseline, we set up the evaluation in three modes: standalone221

(baseline), with static configuration concatenation (baseline+GC), and with attention-based fusion via222

GraMixC (baseline+GMC). Table 1 reports regression results on our main benchmarks; Appendix D223

(Table 2) shows the rest results. Across all models and tasks, adding GC yields consistent gains, and224

incorporating GMC provides further significant improvements, confirming our initial hypothesis.225

Performance improvement. Table 1 shows that adding GC and GMC yields consistent gains across226

all baselines. Among these observed improvements, the scores increasing on DSNI is quite satisfying.227

Prior specialized growth-media regression methods are not convincing with R2 ≤ 0.8 (e.g., 0.75 [49]).228

We confirm this with our base models score R2 between 0.3 and 0.6 on DSNI-pH and DSNI-Temp.229

However, even without tailoring the baseline model design, we bring the score to a new high by230

simply adding GC or GMC. Fig. 6 illustrates some examples of such improvement. We see the231

model’s predictions align more closely with the ideal regression line and better handle rare cases,232

by incorporating configurations and probably capturing the latent manifold structure. Incorporating233

GC and further GMC raises R2 to 0.98 (pH) and 0.97 (Temp). Which not only is considered very234

satisfying in application of bacterial cultivation but also set the new state-of-the-art (SOTA) for235

growth-media prediction. On QM9, GraMixC achieves an MAE of 0.008, nearly matching the SOTA236

(w/o extra training data) of 0.007 [50], and represents the best result among non-GNN models.237

Number of configurations used. We ablate the number of configuration levels in GMC. Fig. 7 shows238

that more configurations generally decreases MSE and increases R2, confirming the value of multi-239

resolution information. Importantly, GMC often needs more than half as many total configurations to240

outperform GC, and performance plateaus—or even slightly declines—when including the last few241
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Figure 6: Illustration of the regression performance improvement example in 3LP by adding GC or
GMC. Each column plots predicted vs. actual pH (top) or temperature (bottom). 3LP+GC (middle)
outperforms the 3LP baseline (left), while 3LP+GMC (right) further boosts R2 up to > 0.9.

Figure 7: Ablation study on the number of configurations used on DSNI. On the blue curves (GMC),
[2, . . . , i] denote fusing configurations from 2 through i via GraMixC. On the green curves (GC),
(i, j) denote the best train/test configuration pair used in static concatenation. Incrementally mixing
configurations improves performance and outperforms static concatenation.

configurations. These aligns with Pitsianis et al. [8], who report a finite set of optimal configurations242

rather than continuous gains at infinite resolutions. Using all configurations available is still preferred.243

4.3 Qualitative evaluation of configurations.244

Our final experiment compares configurations against standard representation-extraction methods. As245

discussed in Section 1, configurations can be viewed as special unsupervised representation learning.246

Fig. 3 already shows their advantage over self-supervised register tokens. Here, we replace GC/GMC247

with PCA [51], UMAP [52], and a vanilla autoencoder (AE), each embed into dimensions the same248
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(a) 2D visualization of embeddings learned.

CE ↓ Acc

3LP+PCA 0.157 0.971
3LP+UMAP 0.181 0.975
3LP+AE 0.158 0.969
3LP+GC 0.046 0.992
3LP+GMC 0.028 0.993

(b) Classification performance.

Figure 8: (a): Illustration of 2D embeddings of MNIST using UMAP (left) and SG-t-SNE (right). (b):
Classification performance on MNIST using features from PCA, UMAP, autoencoder (AE), static
configurations (GC), and GraMixC (GMC) at equal embedding dimensions. SG-t-SNE embeddings
integrated via GC or GMC exploit multi-resolution structure to notably outperform other methods.

number of as our configurations. We visualize these embeddings on MNIST (Fig. 8a; additional249

views in Appendix D.2). Qualitatively, SG-t-SNE (the reduction step in GraMixC) yields more250

uniform, well-separated clusters that respect global kNN connectivity rather than forming hubs.251

Fig. 8b quantifies downstream classification accuracy, where GC and GMC strongly outperform PCA,252

UMAP, and AE given the same embedding budget. These results confirm that mixed configurations253

provide a more expressive yet compact representation for downstream tasks.254

5 Conclusion255

In this study, we investigate the functional mechanisms of configurations in downstream prediction256

tasks and identify three key properties. Based on this, we propose GraMixC, which dynamically257

mixes configurations through attention head. We apply it to the challenging task of 16S rRNA258

cultivation-media prediction task, and set a new state-of-the-art. Further validation across multiple259

standard tabular data benchmarks consistently reveals that GC (a static version of GraMixC) enhances260

baseline performance, while GraMixC demonstrates even more substantial improvements. Our results261

suggest that harnessing rich manifold priors via attention-driven fusion opens promising avenues for262

interpretable and robust learning in both scientific and conventional domains.263

In future work, we plan to extend mixed configurations to more expressive networks and dynamically264

learn configuration alignment through end-to-end differentiable modules. Additionally, we will focus265

on exploring adaptive clustering for evolving data streams where train and test distributions may shift,266

which could further enhance the resilience of multi-resolution approaches.267
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A An Intuitive Example of Configuration Mixing410

To illustrate the necessity of fusing valid clusterings across resolution scales, we use two synthetic411

point-cloud datasets from scikit-learn: “Moons” and “Blobs.” The Blobs dataset is tuned so that no412

single clustering resolution recovers all three clusters. Fig. 9 visualizes each dataset in 3D, using the413

third axis to encode cluster assignments for corresponding configuration: coarser configuration (1)414

and finer configuration (2). Configuration (1), by lifting some dots above the plane, cleanly separates415

the two Moon arcs but merges two (purple and green) of the Blobs clusters. Configuration (2), by416

itself, fails the Blobs with a different merge (blue and green). Only by fusing both configurations417

can all clusters be disentangled—the purple dots in (1) that falls down in (2), emerges correct as the418

green cluster. This toy example shows that multi-resolution clusterings alone are insufficient without419

a fusion mechanism. Our GraMixC use attention-based fusion to integrate these scales. While just420

one demonstration, it highlights the broader advantage of mixing configurations in complex settings.421

Figure 9: Illustration of multi-resolution clustering on synthetic datasets. GT is shown in the framed
box in (0). Upper is the embedding of Moons (left) and Blobs (right) with corresponding configuration
(i) as third dimension; lower is lineage diagram of the configurations.

B Synthetic Clustering Benchmarks422

In this section, we further discuss the limitations of conventional clustering methods raised in423

Section 3.1. We compare our modularity-based clustering strategy, which is used as the unsupervised424

layer in GraMixC, against widely-used clustering algorithms on synthetic 2D datasets.425
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Figure 10: Illustration of clustering methods comparisons across multiple synthetic datasets. Rows
correspond to different 2D point clouds—first row is custom, others from scikit-learn. Each method’s
result is labeled with ARI (top-left in yellow) and execution time (bottom-right in black). Modularity:
kNN+Leiden (far right) accurately recovers ground-truth structures across different shapes and
densities, with robustness to noise, anisotropy, and distribution variation.

Each row in Fig. 10 presents a distinct synthetic dataset distribution, ranging from custom-designed426

to standard scikit-learn datasets, including Taiji, spirals, circles, moons, varied blobs, anisotropy,427

blobs, and isotropic noise. Each column represents the result of one clustering method, annotated428

with Adjusted Rand Index (ARI) and execution time.429

Unlike traditional clustering methods, the approach we adopted (last column: Modularity, im-430

plemented via kNN graph + Leiden community detection) consistently uncovers the underlying431

structure—even in challenging cases involving non-convex geometries, anisotropic spreads, or un-432

even density distributions. This comparison underscores the reliability and manifold sensitivity of our433

unsupervised segmentation approach, even before introducing multi-resolution fusion or downstream434

learning tasks.435

C RMS Alignment Details436

In Section 3.2 we introduced the Reverse Merge & Split (RMS) procedure for aligning multi-437

resolution configurations between train and test sets. Below we provide the full pseudo-code in438

Algorithm 1, using the same notation as the main text.439

Implementation notes.440

• We set θ = 0.1 and compute ARI as in Hubert and Arabie [28].441

• We use 0.1 % of the train samples as anchors to form A.442

• The greedy matching loops over each train configuration ωi to find its best-scoring test443

partner ωj , applies the label mapping, and removes both from further consideration to ensure444

one-to-one alignment.445

The details for SCORE and Ltw are covered in Algorithm 1 so we skip them here.446
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Algorithm 1 Reverse Merge & Split (RMS) Alignment

Require: Ωtrain ∈ NN×mt , Ωtest ∈ NN×ms , anchor indices A ⊂ {1, . . . , N}, θ
Ensure: Aligned Ωtest

1: U← {1, . . . ,mt}, V← {1, . . . ,ms}
2: for i in U do ▷ for each train configuration ωi

3: best_score← −∞, best_j← null
4: ωi ← Ωtrain[A, i]
5: for j in V do ▷ find best test configuration ωj

6: ωj ← Ωtest[A, j]
7: s← SCORE (ωi,ωj , θ)
8: if s > best_score then
9: best_score← s , best_j← j

10: end if
11: end for
12: M ← PAIR_MAPPING (Ωtrain[:, i], Ωtest[:, best_j])
13: for p = 1 to N do
14: Ωtest[p, best_j]←M

(
Ωtest[p, best_j]

)
15: end for
16: Remove i from U , remove best_j from V
17: end for
18: return Ωtest

19: function PAIR_MAPPING(ωi,ωj)
20: ni ← ∥ωi∥∞, nj ← ∥ωj∥∞
21: for p = 1 to N do ▷ build confusion matrix C ∈ Nni×nj

22: C[ωi[p],ωj [p]] += 1
23: end for
24: Construct two-walk Laplacian Ltw

25: F ← Fiedler vector of Ltw

26: Split F → (Fi ∈ Rni , Fj ∈ Rnj )
27: πi ← argsort(Fi), πj ← argsort(Fj)

28: return mapping k 7→ πi

[
π−1
j (k)

]
for k = 1, . . . ,min(ni, nj)

29: end function

D Additional Experimental Results447

In Section 4 we introduced our experimental setup and high-level results. Here, we provide the full448

details and qualitative analyses that couldn’t fit into the main body, including:449

• Downstream task performance on three other benchmarks.450

• Qualitative illustration of prediction versus true value on the three tabular baseline models.451

• Embeddings from PCA and AE.452

D.1 Additional evaluation of proposed module453

Table 2 extends our evaluation to three additional benchmarks: Boston Housing (regression), MNIST454

and CIFAR-10 (classification). We compare classical ensembles (RF, XGBoost, CatBoost), a 3-layer455

MLP (3LP), and three neural tabular architectures (TabNet, TabTransformer, FT-Transformer) in456

three modes: baseline, static configuration concatenation (GC), and attention-based fusion (GMC).457

Across almost all models and datasets, GC consistently improves performance over the raw baselines,458

and GMC provides further gains.459

The sole exception is TabTransformer on Boston Housing, where GC yields only a marginal R2460

increase (0.811→0.813), but GMC degrades it (to 0.671), suggesting that attention-based fusion may461

disrupt already well-structured features in this case.462

On MNIST, GC lifts accuracy above 99%, and GMC pushes it to 99.3–99.5%. On CIFAR-10, GC463

delivers dramatic gains (e.g. TabTransformer from 46.3% to 87.6%), and GMC further improves464
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Table 2: Regression/classification performance on Boston Housing (BHouse), MNIST, and CIFAR10.

Dataset BHouse MNIST CIFAR10

Metric MSE ↓ R2 CE ↓ Acc CE ↓ Acc

RF 0.022 0.884 0.247 0.969 1.681 0.463
XGBoost 0.022 0.881 0.066 0.980 1.296 0.539
CatBoost 0.016 0.913 0.096 0.975 1.230 0.567

3LP 0.023 0.879 0.141 0.970 1.428 0.524
3LP+GC 0.022 0.882 0.046 0.992 0.480 0.844
3LP+GMC 0.017 0.909 0.028 0.993 0.220 0.949
TabN 0.033 0.822 0.130 0.964 1.499 0.463
TabN+GC 0.021 0.888 0.225 0.941 0.377 0.876
TabN+GMC 0.012 0.936 0.017 0.995 0.077 0.978
TabT 0.035 0.811 0.192 0.980 1.028 0.706
TabT+GC 0.035 0.813 0.040 0.993 1.049 0.704
TabT+GMC 0.061 0.671 0.018 0.994 0.458 0.911
FTT 0.032 0.826 0.098 0.980 0.415 0.874
FTT+GC 0.030 0.838 0.029 0.993 0.437 0.870
FTT+GMC 0.026 0.860 0.018 0.995 0.157 0.955

all models, with FT-Transformer+GMC reaching 95.5% accuracy. These results underscore that465

configuration integration via GraMixC is broadly effective, with only one minor counterexample.466

D.2 Additional qualitative evaluation of configurations467

In Section 4.3 we provided the embedding of MNIST digits using UMAP and SG-t-SNE (Fig. 8a).468

Here we provides the missing illustration of embedding with PCA and autoencoder (AE) in Fig. 11.469

As expected, they do not provide representation with clusters as separated as the former two methods.470

With the final figure (Fig. 12) we visualize predicted vs. actual values from the tabular baselines on471

DSNI, filling in what is missing from Fig. 6.472

Figure 11: Illustration of 2D embeddings learned by PCA (left) and AE (right) on MNIST.
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Figure 12: Illustration of the regression performance improvement example in TabNet, TabTrans-
former and FT-Transformer by adding GC or GMC. Each plots predicted vs. actual value.
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NeurIPS Paper Checklist473

1. Claims474

Question: Do the main claims made in the abstract and introduction accurately reflect the475

paper’s contributions and scope?476

Answer: [Yes]477

Justification: In the abstract and introduction, we outline configuration characteristics and478

propose GraMixC. We detail our observation of configurations in Section 2 and methods in479

Section 3.480

Guidelines:481

• The answer NA means that the abstract and introduction do not include the claims482

made in the paper.483

• The abstract and/or introduction should clearly state the claims made, including the484

contributions made in the paper and important assumptions and limitations. A No or485

NA answer to this question will not be perceived well by the reviewers.486

• The claims made should match theoretical and experimental results, and reflect how487

much the results can be expected to generalize to other settings.488

• It is fine to include aspirational goals as motivation as long as it is clear that these goals489

are not attained by the paper.490

2. Limitations491

Question: Does the paper discuss the limitations of the work performed by the authors?492

Answer: [Yes]493

Justification: We discuss present limitations and future plans in Section 5.494

Guidelines:495

• The answer NA means that the paper has no limitation while the answer No means that496

the paper has limitations, but those are not discussed in the paper.497

• The authors are encouraged to create a separate "Limitations" section in their paper.498

• The paper should point out any strong assumptions and how robust the results are to499

violations of these assumptions (e.g., independence assumptions, noiseless settings,500

model well-specification, asymptotic approximations only holding locally). The authors501

should reflect on how these assumptions might be violated in practice and what the502

implications would be.503

• The authors should reflect on the scope of the claims made, e.g., if the approach was504

only tested on a few datasets or with a few runs. In general, empirical results often505

depend on implicit assumptions, which should be articulated.506

• The authors should reflect on the factors that influence the performance of the approach.507

For example, a facial recognition algorithm may perform poorly when image resolution508

is low or images are taken in low lighting. Or a speech-to-text system might not be509

used reliably to provide closed captions for online lectures because it fails to handle510

technical jargon.511

• The authors should discuss the computational efficiency of the proposed algorithms512

and how they scale with dataset size.513

• If applicable, the authors should discuss possible limitations of their approach to514

address problems of privacy and fairness.515

• While the authors might fear that complete honesty about limitations might be used by516

reviewers as grounds for rejection, a worse outcome might be that reviewers discover517

limitations that aren’t acknowledged in the paper. The authors should use their best518

judgment and recognize that individual actions in favor of transparency play an impor-519

tant role in developing norms that preserve the integrity of the community. Reviewers520

will be specifically instructed to not penalize honesty concerning limitations.521

3. Theory assumptions and proofs522

Question: For each theoretical result, does the paper provide the full set of assumptions and523

a complete (and correct) proof?524
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Answer: [NA]525

Justification: Our research presents a practical approach to mixing configurations for down-526

stream predictions. No novel theoretical claims are made that require formal proof.527

Guidelines:528

• The answer NA means that the paper does not include theoretical results.529

• All the theorems, formulas, and proofs in the paper should be numbered and cross-530

referenced.531

• All assumptions should be clearly stated or referenced in the statement of any theorems.532

• The proofs can either appear in the main paper or the supplemental material, but if533

they appear in the supplemental material, the authors are encouraged to provide a short534

proof sketch to provide intuition.535

• Inversely, any informal proof provided in the core of the paper should be complemented536

by formal proofs provided in appendix or supplemental material.537

• Theorems and Lemmas that the proof relies upon should be properly referenced.538

4. Experimental result reproducibility539

Question: Does the paper fully disclose all the information needed to reproduce the main ex-540

perimental results of the paper to the extent that it affects the main claims and/or conclusions541

of the paper (regardless of whether the code and data are provided or not)?542

Answer: [Yes]543

Justification: To ensure complete reproducibility, we provide all necessary information544

in in Section 3, Section 4 and Appendix. It includes methodologies, experiment setups,545

computing environment, parameter settings and other implementation details, enabling546

independent verification of all our claims and conclusions.547

Guidelines:548

• The answer NA means that the paper does not include experiments.549

• If the paper includes experiments, a No answer to this question will not be perceived550

well by the reviewers: Making the paper reproducible is important, regardless of551

whether the code and data are provided or not.552

• If the contribution is a dataset and/or model, the authors should describe the steps taken553

to make their results reproducible or verifiable.554

• Depending on the contribution, reproducibility can be accomplished in various ways.555

For example, if the contribution is a novel architecture, describing the architecture fully556

might suffice, or if the contribution is a specific model and empirical evaluation, it may557

be necessary to either make it possible for others to replicate the model with the same558

dataset, or provide access to the model. In general. releasing code and data is often559

one good way to accomplish this, but reproducibility can also be provided via detailed560

instructions for how to replicate the results, access to a hosted model (e.g., in the case561

of a large language model), releasing of a model checkpoint, or other means that are562

appropriate to the research performed.563

• While NeurIPS does not require releasing code, the conference does require all submis-564

sions to provide some reasonable avenue for reproducibility, which may depend on the565

nature of the contribution. For example566

(a) If the contribution is primarily a new algorithm, the paper should make it clear how567

to reproduce that algorithm.568

(b) If the contribution is primarily a new model architecture, the paper should describe569

the architecture clearly and fully.570

(c) If the contribution is a new model (e.g., a large language model), then there should571

either be a way to access this model for reproducing the results or a way to reproduce572

the model (e.g., with an open-source dataset or instructions for how to construct573

the dataset).574

(d) We recognize that reproducibility may be tricky in some cases, in which case575

authors are welcome to describe the particular way they provide for reproducibility.576

In the case of closed-source models, it may be that access to the model is limited in577

some way (e.g., to registered users), but it should be possible for other researchers578

to have some path to reproducing or verifying the results.579
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5. Open access to data and code580

Question: Does the paper provide open access to the data and code, with sufficient instruc-581

tions to faithfully reproduce the main experimental results, as described in supplemental582

material?583

Answer: [Yes]584

Justification: We have made our code and data publicly accessible through the GitHub links585

provided in this paper.586

Guidelines:587

• The answer NA means that paper does not include experiments requiring code.588

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/589

public/guides/CodeSubmissionPolicy) for more details.590

• While we encourage the release of code and data, we understand that this might not be591

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not592

including code, unless this is central to the contribution (e.g., for a new open-source593

benchmark).594

• The instructions should contain the exact command and environment needed to run to595

reproduce the results. See the NeurIPS code and data submission guidelines (https:596

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.597

• The authors should provide instructions on data access and preparation, including how598

to access the raw data, preprocessed data, intermediate data, and generated data, etc.599

• The authors should provide scripts to reproduce all experimental results for the new600

proposed method and baselines. If only a subset of experiments are reproducible, they601

should state which ones are omitted from the script and why.602

• At submission time, to preserve anonymity, the authors should release anonymized603

versions (if applicable).604

• Providing as much information as possible in supplemental material (appended to the605

paper) is recommended, but including URLs to data and code is permitted.606

6. Experimental setting/details607

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-608

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the609

results?610

Answer: [Yes]611

Justification: We specify all the Implementation details and experimental setup in Sec-612

tion 4.1.613

Guidelines:614

• The answer NA means that the paper does not include experiments.615

• The experimental setting should be presented in the core of the paper to a level of detail616

that is necessary to appreciate the results and make sense of them.617

• The full details can be provided either with the code, in appendix, or as supplemental618

material.619

7. Experiment statistical significance620

Question: Does the paper report error bars suitably and correctly defined or other appropriate621

information about the statistical significance of the experiments?622

Answer: [Yes]623

Justification: The paper includes error bars for key results (e.g., Table 1), clearly stating they624

represent standard deviation over multiple runs with different seeds.625

Guidelines:626

• The answer NA means that the paper does not include experiments.627

• The authors should answer "Yes" if the results are accompanied by error bars, confi-628

dence intervals, or statistical significance tests, at least for the experiments that support629

the main claims of the paper.630
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• The factors of variability that the error bars are capturing should be clearly stated (for631

example, train/test split, initialization, random drawing of some parameter, or overall632

run with given experimental conditions).633

• The method for calculating the error bars should be explained (closed form formula,634

call to a library function, bootstrap, etc.)635

• The assumptions made should be given (e.g., Normally distributed errors).636

• It should be clear whether the error bar is the standard deviation or the standard error637

of the mean.638

• It is OK to report 1-sigma error bars, but one should state it. The authors should639

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis640

of Normality of errors is not verified.641

• For asymmetric distributions, the authors should be careful not to show in tables or642

figures symmetric error bars that would yield results that are out of range (e.g. negative643

error rates).644

• If error bars are reported in tables or plots, The authors should explain in the text how645

they were calculated and reference the corresponding figures or tables in the text.646

8. Experiments compute resources647

Question: For each experiment, does the paper provide sufficient information on the com-648

puter resources (type of compute workers, memory, time of execution) needed to reproduce649

the experiments?650

Answer: [Yes]651

Justification: We detail the experimental environment in Section 4.1 and compare the time652

of execution between different clustering methods in Fig. 10.653

Guidelines:654

• The answer NA means that the paper does not include experiments.655

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,656

or cloud provider, including relevant memory and storage.657

• The paper should provide the amount of compute required for each of the individual658

experimental runs as well as estimate the total compute.659

• The paper should disclose whether the full research project required more compute660

than the experiments reported in the paper (e.g., preliminary or failed experiments that661

didn’t make it into the paper).662

9. Code of ethics663

Question: Does the research conducted in the paper conform, in every respect, with the664

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?665

Answer: [Yes]666

Justification: Our research conforms with every aspect of the NeurIPS Code of Ethics.667

Guidelines:668

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.669

• If the authors answer No, they should explain the special circumstances that require a670

deviation from the Code of Ethics.671

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-672

eration due to laws or regulations in their jurisdiction).673

10. Broader impacts674

Question: Does the paper discuss both potential positive societal impacts and negative675

societal impacts of the work performed?676

Answer: [NA]677

Justification: Our research primarily contributes to improving technical aspects of down-678

stream prediction tasks and does not have broader societal implications.679

Guidelines:680

• The answer NA means that there is no societal impact of the work performed.681
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• If the authors answer NA or No, they should explain why their work has no societal682

impact or why the paper does not address societal impact.683

• Examples of negative societal impacts include potential malicious or unintended uses684

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations685

(e.g., deployment of technologies that could make decisions that unfairly impact specific686

groups), privacy considerations, and security considerations.687

• The conference expects that many papers will be foundational research and not tied688

to particular applications, let alone deployments. However, if there is a direct path to689

any negative applications, the authors should point it out. For example, it is legitimate690

to point out that an improvement in the quality of generative models could be used to691

generate deepfakes for disinformation. On the other hand, it is not needed to point out692

that a generic algorithm for optimizing neural networks could enable people to train693

models that generate Deepfakes faster.694

• The authors should consider possible harms that could arise when the technology is695

being used as intended and functioning correctly, harms that could arise when the696

technology is being used as intended but gives incorrect results, and harms following697

from (intentional or unintentional) misuse of the technology.698

• If there are negative societal impacts, the authors could also discuss possible mitigation699

strategies (e.g., gated release of models, providing defenses in addition to attacks,700

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from701

feedback over time, improving the efficiency and accessibility of ML).702

11. Safeguards703

Question: Does the paper describe safeguards that have been put in place for responsible704

release of data or models that have a high risk for misuse (e.g., pretrained language models,705

image generators, or scraped datasets)?706

Answer: [NA]707

Justification: The models and data presented in our work do not pose any risks of misuse.708

Guidelines:709

• The answer NA means that the paper poses no such risks.710

• Released models that have a high risk for misuse or dual-use should be released with711

necessary safeguards to allow for controlled use of the model, for example by requiring712

that users adhere to usage guidelines or restrictions to access the model or implementing713

safety filters.714

• Datasets that have been scraped from the Internet could pose safety risks. The authors715

should describe how they avoided releasing unsafe images.716

• We recognize that providing effective safeguards is challenging, and many papers do717

not require this, but we encourage authors to take this into account and make a best718

faith effort.719

12. Licenses for existing assets720

Question: Are the creators or original owners of assets (e.g., code, data, models), used in721

the paper, properly credited and are the license and terms of use explicitly mentioned and722

properly respected?723

Answer: [Yes]724

Justification: For every dataset used in our research, we cite its original papers or official725

websites. We properly credit all open-source packages used (e.g. pytorch).726

Guidelines:727

• The answer NA means that the paper does not use existing assets.728

• The authors should cite the original paper that produced the code package or dataset.729

• The authors should state which version of the asset is used and, if possible, include a730

URL.731

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.732

• For scraped data from a particular source (e.g., website), the copyright and terms of733

service of that source should be provided.734
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• If assets are released, the license, copyright information, and terms of use in the735

package should be provided. For popular datasets, paperswithcode.com/datasets736

has curated licenses for some datasets. Their licensing guide can help determine the737

license of a dataset.738

• For existing datasets that are re-packaged, both the original license and the license of739

the derived asset (if it has changed) should be provided.740

• If this information is not available online, the authors are encouraged to reach out to741

the asset’s creators.742

13. New assets743

Question: Are new assets introduced in the paper well documented and is the documentation744

provided alongside the assets?745

Answer: [Yes]746

Justification: We have included README files in our released code repositories to provide747

clear and comprehensive documentation.748

Guidelines:749

• The answer NA means that the paper does not release new assets.750

• Researchers should communicate the details of the dataset/code/model as part of their751

submissions via structured templates. This includes details about training, license,752

limitations, etc.753

• The paper should discuss whether and how consent was obtained from people whose754

asset is used.755

• At submission time, remember to anonymize your assets (if applicable). You can either756

create an anonymized URL or include an anonymized zip file.757

14. Crowdsourcing and research with human subjects758

Question: For crowdsourcing experiments and research with human subjects, does the paper759

include the full text of instructions given to participants and screenshots, if applicable, as760

well as details about compensation (if any)?761

Answer: [NA]762

Justification: Our work does not involve crowdsourcing or research with human subjects.763

Guidelines:764

• The answer NA means that the paper does not involve crowdsourcing nor research with765

human subjects.766

• Including this information in the supplemental material is fine, but if the main contribu-767

tion of the paper involves human subjects, then as much detail as possible should be768

included in the main paper.769

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,770

or other labor should be paid at least the minimum wage in the country of the data771

collector.772

15. Institutional review board (IRB) approvals or equivalent for research with human773

subjects774

Question: Does the paper describe potential risks incurred by study participants, whether775

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)776

approvals (or an equivalent approval/review based on the requirements of your country or777

institution) were obtained?778

Answer: [NA]779

Justification: Our work does not involve human experiements or study participants.780

Guidelines:781

• The answer NA means that the paper does not involve crowdsourcing nor research with782

human subjects.783

• Depending on the country in which research is conducted, IRB approval (or equivalent)784

may be required for any human subjects research. If you obtained IRB approval, you785

should clearly state this in the paper.786
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• We recognize that the procedures for this may vary significantly between institutions787

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the788

guidelines for their institution.789

• For initial submissions, do not include any information that would break anonymity (if790

applicable), such as the institution conducting the review.791

16. Declaration of LLM usage792

Question: Does the paper describe the usage of LLMs if it is an important, original, or793

non-standard component of the core methods in this research? Note that if the LLM is used794

only for writing, editing, or formatting purposes and does not impact the core methodology,795

scientific rigorousness, or originality of the research, declaration is not required.796

Answer: [NA]797

Justification: LLMs are not involved in core method development of our research.798

Guidelines:799

• The answer NA means that the core method development in this research does not800

involve LLMs as any important, original, or non-standard components.801

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)802

for what should or should not be described.803

23

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Preliminary results
	Methodology
	Multi-resolution graph-based clustering
	RMS: reverse merge & split alignment

	Experiments
	Implementation details and experimental setup
	Evaluation of the proposed module
	Qualitative evaluation of configurations.

	Conclusion
	An Intuitive Example of Configuration Mixing
	Synthetic Clustering Benchmarks
	RMS Alignment Details
	Additional Experimental Results
	Additional evaluation of proposed module
	Additional qualitative evaluation of configurations


