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Abstract

Humans possess an innate ability to group objects by similarity—a cognitive mech-
anism that clustering algorithms aim to emulate. Recent advances in community
detection have enabled the discovery of configurations—valid hierarchical clus-
terings across multiple resolution scales—without requiring labeled data. In this
paper, we formally characterize these configurations and identify similar emergent
structures in register tokens within Vision Transformers. Unlike register tokens,
configurations exhibit lower redundancy and eliminate the need for ad hoc se-
lection. They can be learned through unsupervised or self-supervised methods,
yet their selection or composition remains specific to the downstream task and
input. Building on these insights, we introduce GraMixC, a plug-and-play mod-
ule that extracts configurations, aligns them using our novel Reverse Merge/Split
(RMS) technique, and fuses them via attention heads before forwarding them to
any downstream predictor. On the DSNI 16S rRNA cultivation-media prediction
task, GraMixC improves the R2 from 0.6 to 0.9 on various methods, setting a new
state-of-the-art. We further validate GraMixC across standard tabular benchmarks,
where it consistently outperforms single-resolution and static-feature baselines.

1 Introduction

Learning general-purpose features that enhance down-
stream tasks has been a long-standing goal in machine
learning. One prominent example is clustering (i.e., com-
munity detection) in unsupervised learning, which aims
to group entities so that objects in the same cluster are
similar, while objects in different clusters are dissimi-
lar, without relying on any labels [1]]-[3]]. Interestingly,
this paradigm demonstrates remarkable similarities to
human-like behaviors. Decades of cognitive science
studies show that even infants have the ability to group
objects by similarity [4], [S]]. In particular, they often
organize them at different abstraction levels [6]], [7]]. In-
spired by this, recent advances in community detection
have extended clustering to the discovery of configura-
tions—hierarchical clusterings that span multiple reso-
lution scales [8]]. For example, as illustrated in Fig. lin-
eage diagram in Fig. [T} in the CIFAR10 dataset [9],
coarse configurations may separate vehicles from an-
imals, while finer configurations distinguish between
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Figure 1: Illustration of CIFAR10 configu-
rations. Each column represents clustering
at a specific resolution—a configuration.

birds, cats, and dogs. These multi-resolution representations reveal rich hierarchical structures that
could provide stronger priors or inductive biases for deep models. However, despite their potential,
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such configurations remain largely underexplored in deep learning, especially in challenging domains
where labels are sparse.

One such domain is 16S ribosomal RNA (rRNA) gene sequencing, a widely used tool in microbiome
studies for identifying and classifying bacteria. Analyzing 16S rRNA data has consistently confronted
significant challenges in downstream prediction tasks within label-scarce environments. Previous
works in 16S rRNA representation learning have demonstrated substantial benefits for bacterial
taxonomic profiling and microbial community analysis [[10]-[12]]. Notably, Johnson et al. [[13]]
showed that full-length sequencing combined with appropriate clustering of intragenomic sequence
variation can provide more accurate representation of bacterial species in microbiome datasets. These
findings underscore the importance of learning clustered representations without relying on labels.

Recent methodologies typically transform clustering results into pseudo-labels to enhance down-
stream prediction performance. For instance, DeepCluster [|14] iteratively clusters CNN-extracted
visual features and leverages these cluster assignments to guide network parameter updates. Graph-
based methods such as [15] employ structural clustering to overcome limitations of traditional
contrastive learning approaches that depend on positive and negative sample pairs. Their method
captures structural relationships among nodes in heterogeneous information networks, establishing a
self-supervised pre-training framework that learns robust network representations from unlabeled
data. Nevertheless, aforementioned approaches predominantly focus on a single configuration type,
overlooking the potential benefits of mixing configurations across multiple resolution scales.

In this paper, we introduce GraMixC, a plug-and-play module that extracts, aligns and mixes graph-
based configurations for downstream prediction. The main contributions of the paper are as follows:

» We identify three key characteristics of clustering configurations through systematic exper-
imental analysis, providing a novel perspective on enhancing downstream prediction via
mixing configurations.

* We propose GraMixC, a plug-and-play module based on mixed configurations. We apply it
to a novel 16S rRNA cultivation-media prediction task, setting a new state-of-the-art.

* We further conduct extensive experiments on multiple standard tabular benchmarks to
validate GraMixC’s effectiveness, where it consistently outperforms single-resolution and
static-feature baselines.

The remainder of this paper is organized as follows. Section [2] analyzes behavioral patterns of
configurations. Section [3|details our proposed GraMixC. Section 4| evaluates GraMixC’s performance
through extensive experiments. Finally, Section [5|concludes the paper. Our data and implementation
is available at https://anonymous.4open.science/r/project-34CB,

2 Preliminary results

We first present preliminary experimental results on configurations using CIFAR10. Specifically,
we compare patterns of configurations with those of the learnable “register” tokens in a recent
vision transformer DINOv2-reg [16]. Fig. 2] shows the attention maps from our configurations and
their register tokens. Moreover, Fig. [3|shows qualitative behaviors of our configurations and their
quantitative advantages over registers in terms of feature importance and neighborhood similarity.
From these results, we identify three key properties:

Configurations emerge via unsupervised or self-supervised learning. We define Near ground truth
(GT) balls as balls selected with the highest clustering scores, marked yellow in Fig.[2al As shown in
Fig.|2b} the attention map, acquired by feeding configurations as tokens to attention heads for linear
probing, yields high norm regions substantially overlap with GT balls. On another hand, DINOv2-reg
exhibits similar attention map patterns in selected registers (see Fig.[2c]), which might be related to
registers activating different areas in Fig. @ similar to slot attention [16]]-[19]]. Thus, based on the
similar attention map behavior, register token can be considered as a latent configuration.

Configurations are selected and mixed based on input and task. Configuration selection and
mixing refers to learning which resolution scales to focus on for a given downstream task. We
visualize this via attention maps over configuration tokens, where high-norm regions indicate the
selected scales. In Fig.[2b] attention norms vary across rows, showing that each input sample triggers
different resolution scales. Without any change to the configurations, we merge the original labels
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Figure 2: Comparison of attention maps obtained from configurations and registers, rows for samples.
(a): Lineage diagram for configurations, near GT balls are marked yellow. (b): Attention map of
configuration tokens in an attention-based linear probing. (¢): Attention map of DINOv2-reg register
tokens, mean of all patch norms is used. (d): Attention maps over the register tokens, as images.
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Figure 3: Tllustration of another two properties of configurations, grouped by left two and right two.
(a): Lineage diagram where coarser classes are used for GT. (b): Attention map in linear probing the
coarser classes. (c): Distribution of feature vector importance over the register tokens querying, mean
of all patch importance is used. (d): Distribution of cosine similarity between query embeddings of
register and configuration tokens and their 2 neighbors, mean of all patch similarities is used.

into coarser classes (Fig.[3a) and plot the new attention map (Fig. [3b). The attention shifts to align
with the coarser GT, whereas DINOv2-reg register tokens remain unchanged unless re-trained. These
observations confirm that configuration selection and mixing are input- and task-dependent.

Configurations are more informative and less redundant than register tokens. Register tokens
can help extract configurations, similar to object detection , []2;1'[], but selecting a fixed number by
feature importance is arbitrary and non-rigorous (see Fig.[3c). Furthermore, register tokens exhibit
high redundancy—cosine similarity between their embeddings and their 2 neighbors embeddings is
heavily skewed toward 1—whereas configurations yield information less redundant (see Fig. [3d).

3 Methodology

Having these characterizations, we hypothesize that unsupervised methods can produce hierarchical
multi-resolution clusterings, and that task- and input-specific selection and mixing of these configura-
tions represent global information beneficial to downstream tasks. Building on the hypothesis, we
propose a lightweight module GraMixC, that treats configurations as tokens ([CFG] ) and incorporates
a novel alignment layer plus learnable attention heads after the configuration extraction model,
enabling task- and input-specific mixing of configurations via end-to-end back-propagation.

Fig. illustrates GraMixC. Given an input matrix X € RV*? (with N samples and feature dimen-
sion d), GraMixC pass X to two branches: (1) a path to unsupervised learning box that extracts
configurations, and (2) a direct path to the downstream predictor. If at inference, we apply Reverse
Merge & Split (RMS) alignment on the configurations. Then we pass them to positional encoding (PE)
and attention heads. The final concatenation is passed to a downstream predictor for the prediction y.

Except for the downstream predictor, the GraMixC model can be divided into three parts: the
unsupervised learning of configurations, the Reverse Merge & Split (RMS) for alignment, and
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Figure 4: Illustration of the proposed GraMixC module and resulting model. The input data branches
into (upper) a path to unsupervised learning box that extracts configurations, and (lower) a direct path
to the downstream predictor. Their outcomes concatenate and pass to the downstream predictor. The
components occur only during training and inference are colored in blue and gray, respectively.

attention heads for fusion. In the attention heads part, following Darcet et al. [[16], we append register
tokens ([REG]) after [CFG] and [CLS] for a clean attention map, that can be used backwards to guide
configuration selection . Below we detail the rest two components in Section [3.T]and Section[3.2]

3.1 Multi-resolution graph-based clustering

Given X, multi-resolution clustering seeks to extract configurations—yvalid hierarchical clusterings
across multiple resolution scales—which we denote as 2 € N Nxm where m denotes the number of
valid resolution levels. To preserve the latent manifold structure in data, ease parameter sensitivity, and
prevent other problems with traditional clustering methods (see Appendix [B]), we choose the resolution
parameter (7 € R, )-based community detection as our core clustering method. While BlueRed [23]
can conduct graph clustering without problems like resolution limit or parameter sensitivity in
traditional methods, recent work by Pitsianis et al. [§] further demonstrates the elimination of y
selection, and enabled the unsupervised discovery of 2 and the corresponding set of all valid -, which
is denoted as T = {~§,73,...,75} C [0,00). Inspired by these works, the unsupervised box in
Fig. E]unfolds into two steps: (1) k-nearest neighbors (kNN) [24]] graph construction, which return
a directed graph G = (V, E), usually represented as adjacency matrix A € Rf *N and (2) multi-y
clustering on the resulted graph, i.e. modularity based community detection with unsupervised I
learning, which return the wanted €. The details for each of these two steps are:

(1) KNN graph construction. We construct a kNN graph with k = log;, N as convention, using
Euclidean distance for simplicity. Such pair-wise geometric distance between two different vertexes
is denoted d(x;, ;) where ¢ # j and z; € R? is the i-th feature vector. We then have the adjacency
matrix A formulated as: A;; = d(=x;, x;) if (z;, ;) € E, 0 otherwise, where E is the edge set
of the kNN graph and A;; denotes the i-th row and j-th column element of the adjacency matrix.
Then we force column stochastic by dividing each column in the constructed A with the column
sum. The resulted graph is sparse stochastic, and we can apply Stochastic Graph t-SNE (SG-t-SNE)
reweighting [25]], which proved to remedy skewed degree distribution, that is not promised by
conventional t-SNE [26]. From the original work, the key equations for SG-t-SNE reweighting are:

2( . . 2(. .
w(mi,mj)zlexp@d(%%))? with A= Y exp<_d<wwwj>>,

A 20'12 20’12
zj:(x,x;)EE

where ) is a non-negative parameter constant, which we simply set to 15 as previous work show
that it is not so sensitive to the choice of A [25]], and o; is a variable to be numerically solved with
bisection method. After giving value of w to d, we have A with less skewed degree distribution,
which avoids problems like numerical instability and bias towards hubs in downstream clustering.
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(2) multi-y community detection. Then one may simply pass the reweighted A to y-based com-
munity detection method, such as Leiden algorithm [27]], to get one pseudo-configuration vector
wy € {1,..., N} (“pseudo” for not sure to be valid). However, such ~ falls in the range of [0, o),
and searching over all possible y is exhausting. Therefore, we incorporate the BlueRed method with
parallel descending triangulation (parallel-DT) [8]], in order to automatically discover all valid v* € T".
Given a fixed 7y, BlueRed find the optimal configuration w., by the following optimization:

|w|oo |w]oo
wy = argminN — Z Z d(i, ;) 1y=w,=k + 7 Z Z d2(mi,w]’)1wi:k7 ,
we{l,...N} k=1 (i,j)€E k=1 (i,j)€E

where w; denotes the i-th element of w, |w| = max; <y w; is a inf-norm, and 1 denotes the indicator
gate which take value 1 if its subscript condition holds, 0 otherwise. Pitsianis et al. [8]] describe the
first term as attraction and the second term as repulsion. Optimizing each solely yields all-in-one
configuration wy = [1,1,...,1] and all-lonely configuration w., = [1,2,..., N]. Between these
two configurations, parallel-DT allows forming BlueRed Front (BRF) [[8]] by segmenting (0, co) into
m ranges, among which each has a dominant ;" yields lower HAR [8]—the sum of first term and the
negative second term—which means “local minimum” on that range. Thus desired €2 is formed.

3.2 RMS: reverse merge & split alignment

Multi-resolution clustering on different datasets X, iy and Xies¢ often naturally produces misaligned
configurations, that either (1) have different value of m or |w|«, or (2) have different cluster labels.
While (2) is not a problem as re-assigning fix it, (1) could be problematic as the length and position
of configurations influence the downstream fusion. One possible interpretation is that some clusters
are further merged or split in another configuration, leading to this mismatch. To address this, we
propose Reverse Merge & Split (RMS), which identifies an optimal alignment, allowing re-merging
and re-splitting, between two configurations, w; and w;. First of all, an alignment score is defined:
SCORE(LUL, w]‘) = ARI(QJ“ wj) —0 M}O’ .
|“%Lw'+|uﬁ|x

where 6 is a hyperparameter to balance the weights of the two terms, which we set to 0.1, ARI is the
adjusted rand index as defined in Hubert and Arabie [28]]. By this punished ARI design, we consider
different labels, merge and split during scoring the alignment between two partition, but also avoids
too much difference in number of clusters (one extreme case is wgy and w., has ARI of 1).

However, the SCORE itself does not convey the mapping we need for reassigning. In RMS alignment,
we construct a confusion matrix C' € NI«ilee X|wil between w; and w;. As an assignment problem
with a rectangle cost matrix —C), it is solvable by twisting existing Hungarian algorithm methods [29]—
[31]]. Because C' is the adjacency matrix of a bipartite graph, spectral reordering via its graph
Laplacian is preferred, since it encodes global connectivity and reveals coherent split—-merge structures
rather than merely optimizing diagonal entries. As the Fiedler vector reordering [32]] assumes
symmetric positive semi-definite, it is not directly applicable to C'. Inspired by a recent work of
Floros, Pitsianis, and Sun [33]], we introduce a two-walk Laplacian, which is defined as:

. cc’ c
Ltw =D — th7 Wlth th = |: CT CTC :| y
where D = diag(C}w1) is the diagonal degree matrix of Ci,,. We remap w; and w; by using,
respectively, the first ||w;||oo and the last ||w,||~ entries in the Fiedler eigenvector of Ly, which
is the eigenvector corresponds to smallest positive eigenvalue. We further reverse split and merge
simply by reassigning the redundant columns or rows who has element larger than its diagonal entry.

In GraMixC, we carry a small portion (0.1%) of train samples as anchors during inference, and the
portion of i, and Qs corresponding to the anchors are used to calculate the SCORE. Given m is
usually small, we exhaustively test pairs (w;, w;) then iteratively pick the pair yielding the highest
SCORE for each wj;. For each pair, we apply the mapping from RMS(w;, w;). The final alignments
is then used to match the configurations. See the GitHub repository [H and Appendix [C| for alignment
examples and more implementation details.

"https://anonymous . 4open.science/r/project-82CE
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Figure 5: Illustration of target value distributions across train-test splits in DSNI dataset. The first
row represents pH distributions and the second row represents temperature distributions. The first
column represents the training set (Yain) and the second column represents the test set (Yiest)-

4 Experiments

In this section, we evaluate the proposed plug-and-play module by training baseline models with and
without GraMixC (GMC). We also test a static variant (GC), which use aligned configurations as
extra features, without attention mechanism. We expect the performance to follow a general trend

baseline < baseline+GC < baseline+GMC.

We then ablate the number of configurations used to check that they cause a performance regression.

4.1 Implementation details and experimental setup

Our module was implemented with MATLAB, Python 3.12, PyTorch 2.6. We run trainings on a
GeForce RTX 3090Ti GPU. Models were trained with the Adam optimizer [34] at a fixed learning
rate of 1073, Unless otherwise noted, we used a batch size of 100 and trained for up to 100 epochs.

Ahead of diving into the experimental details, we briefly summarize the datasets and metrics used.

DSNI-pH and DSNI-Temp. We collected the DSNI dataset from DSMZ [35]] and NIH [36]. It
comprises six relational tables (STRAINS, MEDIA, SOLUTIONS, INGREDIENTS, STEPS, GAS)
covering taxonomic and protocol information. We use approximately 65 000 samples with 16S rRNA
sequence (500-1 500 nucleotides), cultivation temperatures (2-103 °C), and pH (0.1-11). The task is
to predict optimal temperature (DSNI-Temp) and pH (DSNI-pH) from the 16S rRNA sequence.

Following Celikkanat, Masegosa, and Nielsen and related works [38]], [39], we encode each
16S rRNA sequence as a 7-mer count vector in N16384_ yielding a dataset of shape 65023 x 16 384.
We perform an 80/20 split (52,018 train / 13,005 test), which preserves the skewed pH (6-8) and
temperature (20—40 °C) distributions. Fig. provides an illustration for target value (Ytrain and Yiest)
distribution. Preprocessing—robust scaling, variance thresholding, and selection of the top 1,000
features—was fitted on the training set and then applied to both splits to avoid data leakage.

Additional benchmarks. We further evaluate on QM9 for molecular property regression, on
Boston Housing [41]], and on MNIST and CIFARI1O for classification (some in Appendix D).

Evaluation metrics. For regression we use mean squared error (MSE), mean absolute error (MAE,;
used for QMO for comparability with SOTA) for training, and report coefficient of determination
(R2). For classification we use cross-entropy loss (CE) for training and report top-1 accuracy (Acc).
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Table 1: Regression performance on DSNI-pH, DSNI-Temp and QM9. Values are mean=sw from runs
with different random seeds; best results per baseline are bold; best results per metric are underlined.

DSNI-pH DSNI-Temp QM9
MSE | R? MSE | R? MAE | R2
RF 0.198:0.000 0.601x0.001  17.759:0276¢  0.393=0.000 0.015z0.000  0.979=0.000
XGBoost 0.196:0001  0.604:0003 18.212+0543 0.377=0.018 0.014=0001  0.978=0.001
CatBoost 0.193z0001  0.610+0.002  17.375:0398  0.406=0.013 0.014:0.000 0.978+0.002
3LP 0.201:0.002  0.595+0006 18.484:0.133  0.368=0.006 0.018=0.001  0.958=0.001

3LP+GC 0.097+0.004  0.804+0.008 6.520=0360  0.777:0012  0.016+0.003  0.974+0.000
3LP+GMC 0.023:0002  0.953+0.004 2.2770061  0.922:0002  0.010:0003  0.990:0.002

TabN 0.184:0.004  0.629:0007 13.290:0244  0.545x0.008 0.015:0.001  0.962+0.002
TabN+GC 0.086+0.003  0.825:0.007 7.997+0210  0.726:0007  0.012+0.002  0.983=0.001
TabN+GMC  0.020:0.001  0.959-0.002 0.989-0361  0.966:0012  0.008:0.000 0.995-0.002
TabT 0.256:0007 0.483+0014 18.910+0247  0.353z0.008 0.434:0008 0.921:0.008
TabT+GC 0.106+0.002  0.786=0.005 8.280+0303  0.717x0010  0.212:0.004  0.961:+0.008
TabT+GMC  0.017:0.002  0.964:0.005 2.785:0540  0.904:0018  0.009:0000 0.998-0.001
FTT 0.2180.003  0.561:0006 13.571:0060 0.536=0.002 0.085:0.005  0.984:0.006
FTT+GC 0.0700.003  0.858+0.007 5.915:0277  0.797+0.009  0.034:0.002  0.993:0.003
FTT+GMC 0.007+0.005 0.984:0.000 1.480-0.120  0.949:0.004  0.026:0.001  0.995:0.003

For each benchmark, we include three classical decision tree models for reference: Random Forest
(RF) [43], XGBoost [44], CatBoost [45]. As both GMC and GC are plug-and-play modules, they can
be easily applied to various downstream predictors. We first evaluate a 3-layer perceptron (3LP) with
hidden dims [256,128,64]. Because our inputs combine numerical features with categorical config-
urations, we naturally consider tabular models: TabNet (TabN) [46]], TabTransformer (TabT) [47],
FT-Transformer (FTT) [48]] were all run with their default settings from the official implementations.

4.2 Evaluation of the proposed module

As shown in Fig. 2]and Fig.[3] we demonstrate, with attention maps, the learned mixing of configu-
rations by training models with self-attention head on aligned configurations. In order to quantify
the quality of such mixing, for each baseline, we set up the evaluation in three modes: standalone
(baseline), with static configuration concatenation (baseline+GC), and with attention-based fusion via
GraMixC (baseline+GMC). Table |I|rep0rts regression results on our main benchmarks; Appendix |§|
(Table[2) shows the rest results. Across all models and tasks, adding GC yields consistent gains, and
incorporating GMC provides further significant improvements, confirming our initial hypothesis.

Performance improvement. Table[I]shows that adding GC and GMC yields consistent gains across
all baselines. Among these observed improvements, the scores increasing on DSNI is quite satisfying.
Prior specialized growth-media regression methods are not convincing with R? < 0.8 (e.g., 0.75 [49]).
We confirm this with our base models score R? between 0.3 and 0.6 on DSNI-pH and DSNI-Temp.
However, even without tailoring the baseline model design, we bring the score to a new high by
simply adding GC or GMC. Fig. [§] illustrates some examples of such improvement. We see the
model’s predictions align more closely with the ideal regression line and better handle rare cases,
by incorporating configurations and probably capturing the latent manifold structure. Incorporating
GC and further GMC raises R? to 0.98 (pH) and 0.97 (Temp). Which not only is considered very
satisfying in application of bacterial cultivation but also set the new state-of-the-art (SOTA) for
growth-media prediction. On QM9, GraMixC achieves an MAE of 0.008, nearly matching the SOTA
(w/o extra training data) of 0.007 [50], and represents the best result among non-GNN models.

Number of configurations used. We ablate the number of configuration levels in GMC. Fig.[/|shows
that more configurations generally decreases MSE and increases R?, confirming the value of multi-
resolution information. Importantly, GMC often needs more than half as many total configurations to
outperform GC, and performance plateaus—or even slightly declines—when including the last few
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Figure 6: Illustration of the regression performance improvement example in 3LP by adding GC or
GMC. Each column plots predicted vs. actual pH (top) or temperature (bottom). 3LP+GC (middle)
outperforms the 3LP baseline (left), while 3LP+GMC (right) further boosts R? up to > 0.9.
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Figure 7: Ablation study on the number of configurations used on DSNI. On the blue curves (GMC),
[2,...,i] denote fusing configurations from 2 through ¢ via GraMixC. On the green curves (GC),
(4, j) denote the best train/test configuration pair used in static concatenation. Incrementally mixing
configurations improves performance and outperforms static concatenation.

242 configurations. These aligns with Pitsianis et al. [§]], who report a finite set of optimal configurations
243 rather than continuous gains at infinite resolutions. Using all configurations available is still preferred.

244 4.3 Qualitative evaluation of configurations.

245  Our final experiment compares configurations against standard representation-extraction methods. As
246 discussed in Section[I] configurations can be viewed as special unsupervised representation learning.
247 Fig.[B|already shows their advantage over self-supervised register tokens. Here, we replace GC/GMC
248 with PCA , UMAP , and a vanilla autoencoder (AE), each embed into dimensions the same



249
250
251
252
253
254

255

256
257
258
259
260
261
262
263

264
265

267

268

269
270
271
272
273

274
275
276
277
278
279
280
281

9

4

p CE|l Acc
% ty 3LP+PCA 0.157 0.971
Y ® e 3LP+UMAP 0.181 0.975

T L 3LP+AE 0.158  0.969

, S : 3LP+GC 0.046  0.992

& 3LP+GMC  0.028 0.993

o0 o1 @2 o3 04 o5 06 @7 ©8 @9

(a) 2D visualization of embeddings learned. (b) Classification performance.

Figure 8: (a): Illustration of 2D embeddings of MNIST using UMAP (left) and SG-t-SNE (right). (b):
Classification performance on MNIST using features from PCA, UMAP, autoencoder (AE), static
configurations (GC), and GraMixC (GMC) at equal embedding dimensions. SG-t-SNE embeddings
integrated via GC or GMC exploit multi-resolution structure to notably outperform other methods.

number of as our configurations. We visualize these embeddings on MNIST (Fig. [8a} additional
views in Appendix [D.2). Qualitatively, SG-t-SNE (the reduction step in GraMixC) yields more
uniform, well-separated clusters that respect global kNN connectivity rather than forming hubs.
Fig.|8blquantifies downstream classification accuracy, where GC and GMC strongly outperform PCA,
UMAP, and AE given the same embedding budget. These results confirm that mixed configurations
provide a more expressive yet compact representation for downstream tasks.

5 Conclusion

In this study, we investigate the functional mechanisms of configurations in downstream prediction
tasks and identify three key properties. Based on this, we propose GraMixC, which dynamically
mixes configurations through attention head. We apply it to the challenging task of 16S rRNA
cultivation-media prediction task, and set a new state-of-the-art. Further validation across multiple
standard tabular data benchmarks consistently reveals that GC (a static version of GraMixC) enhances
baseline performance, while GraMixC demonstrates even more substantial improvements. Our results
suggest that harnessing rich manifold priors via attention-driven fusion opens promising avenues for
interpretable and robust learning in both scientific and conventional domains.

In future work, we plan to extend mixed configurations to more expressive networks and dynamically
learn configuration alignment through end-to-end differentiable modules. Additionally, we will focus
on exploring adaptive clustering for evolving data streams where train and test distributions may shift,
which could further enhance the resilience of multi-resolution approaches.
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A An Intuitive Example of Configuration Mixing

To illustrate the necessity of fusing valid clusterings across resolution scales, we use two synthetic
point-cloud datasets from scikit-learn: “Moons” and “Blobs.” The Blobs dataset is tuned so that no
single clustering resolution recovers all three clusters. Fig. [0] visualizes each dataset in 3D, using the
third axis to encode cluster assignments for corresponding configuration: coarser configuration (1)
and finer configuration (2). Configuration (1), by lifting some dots above the plane, cleanly separates
the two Moon arcs but merges two (purple and green) of the Blobs clusters. Configuration (2), by
itself, fails the Blobs with a different merge (blue and green). Only by fusing both configurations
can all clusters be disentangled—the purple dots in (1) that falls down in (2), emerges correct as the
green cluster. This toy example shows that multi-resolution clusterings alone are insufficient without
a fusion mechanism. Our GraMixC use attention-based fusion to integrate these scales. While just
one demonstration, it highlights the broader advantage of mixing configurations in complex settings.

Blobs + (1) Blobs + (1, 2), (2) as the z-axis

2)
Figure 9: Illustration of multi-resolution clustering on synthetic datasets. GT is shown in the framed

box in (0). Upper is the embedding of Moons (left) and Blobs (right) with corresponding configuration
(¢) as third dimension; lower is lineage diagram of the configurations.

B Synthetic Clustering Benchmarks

In this section, we further discuss the limitations of conventional clustering methods raised in
Section 3.1 We compare our modularity-based clustering strategy, which is used as the unsupervised
layer in GraMixC, against widely-used clustering algorithms on synthetic 2D datasets.
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Figure 10: Ilustration of clustering methods comparisons across multiple synthetic datasets. Rows
correspond to different 2D point clouds—first row is custom, others from scikit-learn. Each method’s
result is labeled with ARI (top-left in yellow) and execution time (bottom-right in black). Modularity:
kNN+Leiden (far right) accurately recovers ground-truth structures across different shapes and
densities, with robustness to noise, anisotropy, and distribution variation.

Each row in Fig.[T0|presents a distinct synthetic dataset distribution, ranging from custom-designed
to standard scikit-learn datasets, including 7aiji, spirals, circles, moons, varied blobs, anisotropy,
blobs, and isotropic noise. Each column represents the result of one clustering method, annotated
with Adjusted Rand Index (ARI) and execution time.

Unlike traditional clustering methods, the approach we adopted (last column: Modularity, im-
plemented via kNN graph + Leiden community detection) consistently uncovers the underlying
structure—even in challenging cases involving non-convex geometries, anisotropic spreads, or un-
even density distributions. This comparison underscores the reliability and manifold sensitivity of our
unsupervised segmentation approach, even before introducing multi-resolution fusion or downstream
learning tasks.

C RMS Alignment Details

In Section [3.2] we introduced the Reverse Merge & Split (RMS) procedure for aligning multi-
resolution configurations between train and test sets. Below we provide the full pseudo-code in
Algorithm [T} using the same notation as the main text.

Implementation notes.
» We set = 0.1 and compute ARI as in Hubert and Arabie [28].
* We use 0.1 % of the train samples as anchors to form .A.

* The greedy matching loops over each train configuration w; to find its best-scoring test
partner w;, applies the label mapping, and removes both from further consideration to ensure
one-to-one alignment.

The details for SCORE and Ly, are covered in Algorithm[I]so we skip them here.
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Algorithm 1 Reverse Merge & Split (RMS) Alignment

Require: Qi € NVXme Q€ NVX™Ms anchor indices A C {1,...,N},
Ensure: Aligned Qe
LU« {1,...,m}, V{1,...,ms}

2: for i in U do > for each train configuration w;
3: best_score <— —oo, best_j <— null

4: Wi < Qirain [-Av Z]

5: for jin V do > find best test configuration w;
6: Wj Qiest [Aa j]

7: s < SCORE (w;, wj,0)

8: if s > best_score then

9: best_score <— s, best_j <+ j

10: end if

11: end for
12: M + PAIR_MAPPING (Q4ain[:, 7], Qtest[:, best_j])
13: forp=1to N do

14: Qtest [p, beSt_j] «~— M (Qtest [p7 beSt_J])
15: end for

16: Remove i from U, remove best_j from V
17: end for

18: return e

19: function PAIR_MAPPING(w;, w;)

200y lwilloos  my 4 lwjlleo

21: forp=1to N do > build confusion matrix C' € N™*"™
22: Clw;[p], wj[p]] +=1

23: end for

24: Construct two-walk Laplacian Ly,

25: F + Fiedler vector of L,

26: Split F — (F; € R™, F; € R™)

27: m; < argsort(F;), m; < argsort(F;)

28: return mapping k — m; [ﬂ]_l(k)] for k =1,...,min(n;, n;)
29: end function

D Additional Experimental Results

In Section 4| we introduced our experimental setup and high-level results. Here, we provide the full
details and qualitative analyses that couldn’t fit into the main body, including:

* Downstream task performance on three other benchmarks.
* Qualitative illustration of prediction versus true value on the three tabular baseline models.
* Embeddings from PCA and AE.

D.1 Additional evaluation of proposed module

Table 2] extends our evaluation to three additional benchmarks: Boston Housing (regression), MNIST
and CIFAR-10 (classification). We compare classical ensembles (RF, XGBoost, CatBoost), a 3-layer
MLP (3LP), and three neural tabular architectures (TabNet, TabTransformer, FT-Transformer) in
three modes: baseline, static configuration concatenation (GC), and attention-based fusion (GMC).

Across almost all models and datasets, GC consistently improves performance over the raw baselines,
and GMC provides further gains.

The sole exception is TabTransformer on Boston Housing, where GC yields only a marginal R?
increase (0.811—0.813), but GMC degrades it (to 0.671), suggesting that attention-based fusion may
disrupt already well-structured features in this case.

On MNIST, GC lifts accuracy above 99%, and GMC pushes it to 99.3-99.5%. On CIFAR-10, GC
delivers dramatic gains (e.g. TabTransformer from 46.3% to 87.6%), and GMC further improves

14



465
466

467

468
469
470

471
472

Table 2: Regression/classification performance on Boston Housing (BHouse), MNIST, and CIFAR10.

Dataset BHouse MNIST CIFAR10
Metric MSE] R? CE|l Acc CE| Acc
RF 0.022 0.884 0247 0969 1.681 0.463
XGBoost 0.022 0.881 0.066 0980 1.296 0.539
CatBoost 0.016 0913 0.096 0975 1230 0.567
3LP 0.023 0.879 0.141 0970 1428 0.524
3LP+GC 0.022 0.882 0.046 0992 0480 0.844
3LP+GMC 0.017 0909 0.028 0.993 0.220 0.949
TabN 0.033 0.822 0.130 0964 1499 0.463

TabN+GC 0.021 0.888 0.225 0941 0377 0.876
TabN+GMC  0.012 0936 0.017 0.995 0.077 0.978

TabT 0.035 0.811 0.192 0980 1.028 0.706
TabT+GC 0.035 0813 0.040 0993 1.049 0.704
TabT+GMC  0.061 0.671 0.018 0.994 0.458 0911

FIT 0.032 0.826 0.098 0980 0415 0.874
FTT+GC 0.030 0.838 0.029 0993 0437 0.870
FTT+GMC 0.026 0.860 0.018 0.995 0.157 0.955

all models, with FT-Transformer+GMC reaching 95.5% accuracy. These results underscore that
configuration integration via GraMixC is broadly effective, with only one minor counterexample.

D.2 Additional qualitative evaluation of configurations

In Section .3 we provided the embedding of MNIST digits using UMAP and SG-t-SNE (Fig. [8a)).
Here we provides the missing illustration of embedding with PCA and autoencoder (AE) in Fig.
As expected, they do not provide representation with clusters as separated as the former two methods.

With the final figure (Fig.[I2) we visualize predicted vs. actual values from the tabular baselines on

DSNI, filling in what is missing from Fig. [6]

Figure 11: Illustration of 2D embeddings learned by PCA (left) and AE (right) on MNIST.
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Figure 12: Illustration of the regression performance improvement example in TabNet, TabTrans-
former and FT-Transformer by adding GC or GMC. Each plots predicted vs. actual value.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In the abstract and introduction, we outline configuration characteristics and
propose GraMixC. We detail our observation of configurations in Section [2]and methods in
Section 3

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss present limitations and future plans in Section 5]

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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525 Answer: [NA]

526 Justification: Our research presents a practical approach to mixing configurations for down-
527 stream predictions. No novel theoretical claims are made that require formal proof.

528 Guidelines:

529 * The answer NA means that the paper does not include theoretical results.

530  All the theorems, formulas, and proofs in the paper should be numbered and cross-
531 referenced.

532 * All assumptions should be clearly stated or referenced in the statement of any theorems.
533 * The proofs can either appear in the main paper or the supplemental material, but if
534 they appear in the supplemental material, the authors are encouraged to provide a short
535 proof sketch to provide intuition.

536 ¢ Inversely, any informal proof provided in the core of the paper should be complemented
537 by formal proofs provided in appendix or supplemental material.

538 * Theorems and Lemmas that the proof relies upon should be properly referenced.

539 4. Experimental result reproducibility

540 Question: Does the paper fully disclose all the information needed to reproduce the main ex-
541 perimental results of the paper to the extent that it affects the main claims and/or conclusions
542 of the paper (regardless of whether the code and data are provided or not)?

543 Answer: [Yes]

544 Justification: To ensure complete reproducibility, we provide all necessary information
545 in in Section [3] Section ] and Appendix. It includes methodologies, experiment setups,
546 computing environment, parameter settings and other implementation details, enabling
547 independent verification of all our claims and conclusions.

548 Guidelines:

549 * The answer NA means that the paper does not include experiments.

550 * If the paper includes experiments, a No answer to this question will not be perceived
551 well by the reviewers: Making the paper reproducible is important, regardless of
552 whether the code and data are provided or not.

553 * If the contribution is a dataset and/or model, the authors should describe the steps taken
554 to make their results reproducible or verifiable.

555 * Depending on the contribution, reproducibility can be accomplished in various ways.
556 For example, if the contribution is a novel architecture, describing the architecture fully
557 might suffice, or if the contribution is a specific model and empirical evaluation, it may
558 be necessary to either make it possible for others to replicate the model with the same
559 dataset, or provide access to the model. In general. releasing code and data is often
560 one good way to accomplish this, but reproducibility can also be provided via detailed
561 instructions for how to replicate the results, access to a hosted model (e.g., in the case
562 of a large language model), releasing of a model checkpoint, or other means that are
563 appropriate to the research performed.

564 * While NeurIPS does not require releasing code, the conference does require all submis-
565 sions to provide some reasonable avenue for reproducibility, which may depend on the
566 nature of the contribution. For example

567 (a) If the contribution is primarily a new algorithm, the paper should make it clear how
568 to reproduce that algorithm.

569 (b) If the contribution is primarily a new model architecture, the paper should describe
570 the architecture clearly and fully.

571 (c) If the contribution is a new model (e.g., a large language model), then there should
572 either be a way to access this model for reproducing the results or a way to reproduce
573 the model (e.g., with an open-source dataset or instructions for how to construct
574 the dataset).

575 (d) We recognize that reproducibility may be tricky in some cases, in which case
576 authors are welcome to describe the particular way they provide for reproducibility.
577 In the case of closed-source models, it may be that access to the model is limited in
578 some way (e.g., to registered users), but it should be possible for other researchers
579 to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have made our code and data publicly accessible through the GitHub links
provided in this paper.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We specify all the Implementation details and experimental setup in Sec-
tion 411

Guidelines:

» The answer NA means that the paper does not include experiments.
* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper includes error bars for key results (e.g., Table[T), clearly stating they
represent standard deviation over multiple runs with different seeds.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We detail the experimental environment in Sectionf.T]and compare the time
of execution between different clustering methods in Fig.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Our research conforms with every aspect of the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our research primarily contributes to improving technical aspects of down-
stream prediction tasks and does not have broader societal implications.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The models and data presented in our work do not pose any risks of misuse.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: For every dataset used in our research, we cite its original papers or official
websites. We properly credit all open-source packages used (e.g. pytorch).

Guidelines:
» The answer NA means that the paper does not use existing assets.

 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We have included README files in our released code repositories to provide
clear and comprehensive documentation.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Our work does not involve crowdsourcing or research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Our work does not involve human experiements or study participants.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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787 * We recognize that the procedures for this may vary significantly between institutions

788 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
789 guidelines for their institution.

790 * For initial submissions, do not include any information that would break anonymity (if
791 applicable), such as the institution conducting the review.

792 16. Declaration of LLM usage

793 Question: Does the paper describe the usage of LLMs if it is an important, original, or
794 non-standard component of the core methods in this research? Note that if the LLM is used
795 only for writing, editing, or formatting purposes and does not impact the core methodology,
796 scientific rigorousness, or originality of the research, declaration is not required.

797 Answer: [NA]

798 Justification: LLMs are not involved in core method development of our research.

799 Guidelines:

800 * The answer NA means that the core method development in this research does not
801 involve LLMs as any important, original, or non-standard components.

802 ¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
803 for what should or should not be described.
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